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A class of coordinate transformations depending on a singEe parameter is studied as 
quadrature tool. Working rules for the choice of the parameter are proposed. Numerical 
tests for the method are presented. They show that these coordinate transformations, vvhen 
combined with Causs+Legendre quadrature rules. are well suited for the numerical integration 
of functions possessing a sharp peak at or near’ one boundary of the interva! of mtegration. 
A method :o combine the transformations with automatic quadrature routines is also 
proposed; it seems to be useful for the numerical evaluation of integrals with the same kind 
of integrand behavior. ‘(: 1990 4cademic Press, Inc. 

1. INTROTW~TIOF~ 

Quite often in practice one encounters the problem of how to integrate fttncrions 
with a sharp peak. In most cases such an integration can be dune only numerically. 
Usually the position of the peak and/or its width are known at least roughly. FIT 
example, in our investigations concerning multicenter molecular integrals with 
exponential-type functions [ 11 we encountered integrals of the form 

with weight function (p, 3~: fi E R + ; ??I, II E N) 

Integral I is part of the integrand of an outer integral with integration variable p. 
The weight function (1.2) exhibits very sharp peaks for certain combinations of the 
parameters (IT!, n, 2. /3, p). especially for large p. A straightforward calcuiation 
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shows that the location of the peaks may be obtained quite easily as zeroes of a 
third-order polynomial. 

A number of quadrature methods turned out to be inappropriate in this 
situation, mainly because of the computational costs caused by the sharp peaks: 

-Automatic routines [Z] are accessible in software libraries [3,4], but even 
sophisticated routines [S, 61 have some disadvantages [7, S]. 

-For Gaussian rules [9], either the standard ones, or newly computed 
Gaussian rules [9] with respect to Eq. (1.2), also the numerical error estimation is 
difficult [lo]. 

It is more cost effective to use all available information on the behavior of the 
integrand to make the integrand function smoother and to flatten its peaks. This 
can be done through coordinate transformations [ 1 l-161. For example, the IMT- 
rule [ 17, IS] can be understood this way. Then many quadrature methods perform 
better for the new integrand. 

In this paper we shall study a simple class of coordinate transformations: M&us 
transfornzations [ 19, 201, also called bilinear or fractional linear transformations, 

depending on a single parameter. The additional numerical effort to implement it 
as a quadrature tool is (usually) negligible since no transcendental functions have 
to be computed. For the problem described above these transformations seem to be 
very effective. First results of the method concerning integrals with weight function 
(1.2) were presented at a conference. ’ Now, more generally, we shall see that these 
coordinate transformations are well suited for the quadrature of functions with a 
sharp peak at or near a boundary of the interval of integration. 

In the following section we describe how to use these Mobius transformations in 
combination with Gauss-Legendre rules as quadrature tools. Classes of functions 
for which the method is exact will be given explicitly. 

In the subsequent section we will report on the implementation and numerical 
tests of the method. Working rules for the choice of the parameter will be presented. 

The results will be discussed and summarized in the last section. We will see that 
the use of Mobius transformations in combination with lixed quadrature rules or 
with automatic routines makes the numerical quadrature of functions with a sharp 
peak at or near a boundary much more efficient. 

In an appendix an equivalent formulation of the method in terms of quadrature 
rules is presented. Here we study Mobius transformations in combination with 
Gazus-Jacobi rules: This allows us to point out a connection of our method to some 
well-known quadrature rules. 

’ Sanibel Symposium 1988 on Atomic, Molecular and Condensed Matter Theory, University of 

Florida, Whitney Marine Laboratory. St. Augustine. Florida, March 12-19. 1988. 
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2. h%ijBIUS TRANSFORMATIONS AS @J.~DRATuRE TOOLS 

In numerical quadrature coordinate transformations arc used to obtain a more 
favorable integrand, and then a fixed quadrature rule or even sun automatic routine 
is used to evaluate the transformed integral. 

The result of using the coordinate transformation 

x = cp(zc) ;, 2. I ; 

with a = q(c), b = q(n) to obtain 

g(u) =f(v(z~)) cp’(u). (2.3 ‘i 

and applying a fixed quadrature rule G,, with weights ii; and abscissaz C; to rhe 

u-integral is 

It may be formulated entirely in terms of the original integrand S(.X i as 

i.e., as a fixed quadrature rule R, with abscissa e -vi= cp(zdj) and weights CO;= 
W,(p’jUj). 

Unless otherwise stated we will use the notation C, for an IT-point Gauss- 

Legendre rule in the sequel. 
First we consider the case where [a, b] and [c, if] are bou.nded intervals. There 

is no lsss of generality assuming [a, h] = [c, d] = [ - I, 21 since this can Sways be 
achieved by suitable linear coordinate transformations. 

We study the one-parameter system of Miibius transformations 

for - t < < < 1. Here we regard 5 as a parameter, and u and .J 

581.‘87:1-5 

as independent 
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variables. Hence cp’ denotes the derivative of cp with respect to u in the following. 
Using (2.6) as coordinate transformation in combination with G, yields exact 
results whenever g(u) is a polynomial of degree less than 212, i.e., whenf(x) is of the 
form 

f(x) = ( 1 y;)” pz,*- I (f&f-) 
1 - 1 

=(I-5s)‘p:“-I ( > 1 - (5 

(2.8c) 

where P,(t) and p,,(r) denote any-in general different-polynomials in t of degree 
less or equal to rrz, and b.j are arbitrary constants. This parallels to a certain extent 
the results of Newbery [ 1 l] on exponential and trigonometric polynomials. 

Now we consider the case where [a, b] is a semi-infinite interval. Without loss 
of generality we may assume [a, b] = [0, a] and [c, n] = [ - 1, 11. In this case we 
may use the Mobius transformation 

1SU 
x = @(s’; u) = 5 - 

l-u 
(2.9) 

with inverse 

(2.10) 

for 0 < 5 < ‘co as coordinate transformation. Applying G, to the new integrand gives 
exact results iff(x) is of the form 

(2.11a) 

(2.1 lc) 

In Appendix A it is shown how the quadrature method based on the coordinate 
transformations of both cases can be formulated in terms of quadrature rules. The 
case of the unbounded interval is seen to be completely equivalent to the Gauss+ 
rational rules available in the NAG-library [21, 221. Therefore no test results for 
this case will be given in the nest section. It seems probable that the rules corre- 
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spondmg to the case of the bounded interval-or equ~~la~ent~y~ the coordins.te 
transformations (2.6)-will turn out to be of comparable practical importance in 
view of the test results presented in the following section. 

3. APPLICATION AND NUMERICAL TESTS 

The numerical quadrature of a function with a sharp peak at or near a boundary 
of integration, which is based upon Mobius transformations. requires the choice s: 
a certain <~ First, we discuss how L;’ should be chosen in order to utihze information 
on the position and/or the width of the peak. Second, we will compare our method 
:o other quadrature ruies by presenting numerical test values for various functions. 
These functions all have a sharp peak at or near a boundary of integration and may 
be taken as quite typical representatives. Further we will report on test rest&s 
obtained for various choices of <. We will see that there is normally quite a large 
interval of t-values yielding acceptable results. 

We consider the coordinate transformation (2.6) on [-I. i]. If the origina! 
integrand peaks in [S-AS/~, s + AX/~] then this interval is mapped to an u-inier- 
val of approximate length 

Thus if cp’(<; x(<; .u)j is small the peak region can be expanded enormously. anc 
hence the new integrand poses less problems for numerical quadrature via 6,:. 
Equivalently we may say that the abscissae of the new rule R,! obtained from G:. 
using (2.5) and (2.6) cluster in the region of the peak. 

Since the extrema of ~‘(5; 14) are 

i.e., dimctiy at the boundaries, by continuity ?‘(.2; U) is small for G z t7 i.e.. near one 
boundary, if 141 z 1. 

These tacts suggest the following two working rules which both assume I<; 2 I: 

Hf the point -x0 is chosen as described above then the bulk of the peak is 
contained in one of the +y:-inter\:ais I, = [I<, 11 or L = [ - 1, (1. That interval is 
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expanded by a large factor by ~(5; s) to the corresponding u-interval, J, = [0, l] 
or L = [ - 1, 01, resp., if 151 = 1. 

This Working Rule W can be used if the width and the position of the peak are 
known. If only the position is known one may use the following working rule: 

WORKING RULE W’. lf the function f has a sharp peak at or close to s = x0 

choose 5 = x0 and use the corresponding Miibius transformation (2.6). 

First we consider the case that function f has its peak exactly? at the boundary. 
Then Rule W’ is not applicable. Rule LV has the effect of enlarging the half width 
at half maximum from approximately 1 - 151 for f to about 1 for the transformed 
function h(u) = f (q(<; u)). The extra factor cp’(<; U) of the new integrand g(zl) is 
large near the boundary opposite to the peak. Therefore extra weight is given to 
that interval, where the transformed function is supposed to be small. Ideally this 
can lead to a very broad peak of the new integrand near u = 0. 

These effects are illustrated in Fig. 1. This plot shows the function 

f(x)=?(1+2500(5x+5)')-', (3.3 j 

the transformed function A(U), and the new integrand g(u) for 5 = -0.996. 
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FIG. 1. Plotted are functionf(x) of (3.3), the transformed function II(U) and the new integrand g(lr) 

corresponding to it for <= -0.996. 
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In the case that the function f has its peak close to one boundary both Working 
uies W and W’ may be applied. The effect of Rule W’ is that the transformed 

function peaks at i: = 0. Rule W works as in the former case. In any case and by 
both working rules the width of the peak is increased enormously. 

Now we report on numerical tests of the method. The computations were done 
ic FORTRAN 77 DOUBLE PRECISION, corresponding to an accuracy of 14- ‘i 5 
decimal digits on our computer. 

In Table I we present results for the following functions: 

la) The function (3.3) possessing a peak ar one boundary. 

(b ‘, The function 

which 1s of the form (2.8). Apart from relative rounding errors or the order of 
10” x I;. where 12 is the order of the Gauss-Legendre rule used, our transform 
method is indeed exact for 1~ > 12. 

(c j The functions 

.f’( x) = 50 
(50x+ 5O)!O 

[l+10(50X+50)2]~~” 

possessing a sharp peak near one boundary. 

TABLE I 

Coz~panson of t!~ Method of the Present Articie w:th Composite Gauss-Legendre Rules wit:-. F!: 
Subinterva!s for Various Functions on the Interval [ - 1, 11 

Fum2ion ; c 

Present 
method 

Legerdre rules 

t?? = 1 nt-2 

(3.3) -0.996 7.14 74173 :4cMi5 vd 

13.4 J 0.99 12’13 183”:*” 1492 

i35a! -0.9881 1322 1@,‘*** ?F4;348 iv 
13.5,) -0.983 14:2-l I*&**” 104;348 vi’ 

i 3.5b’l 0.893 1O;lY 29.59 24;‘96 w 
l3.5bj 0.983 19.35 29.‘59 54.96 w 

Yw(>. In the case of the composite Legendre ru!e with m = 2 the two intervals [ - I, ~~ and L<, I] are 
used. Plotted are the numbers n5;~~,,) of functional evaluations needed to achieve 5- and lO-figure 
accuraq. req. Three stars mean that the corresponding number is greater than 2or?. The <-va:;ie used 
in i 1.6) and the curresponding working rule are indicated. 
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From Table I it is clear that Rule W is superior to Rule W’-if this rule is 
applicable. In fact, Rule W utilizes more information than does Rule W’. But it is 
seen that even application of Rule W’ leads to results superior to Gauss-Legendre 
rules. 

Hence it is not optimal to think of the peak pasitiorz alone: The whole peak 
region should be considered. This also explains why our method with highest 
resolution at one boundary, see (3.2 j, also gives good results for the functions (3.5). 
The method of the present article is not sensitive to the exact value of j’; there 
is normally a large interval of c-values yielding acceptable results. This may be 
seen from Table II. In terms of quadrature rules one might say: It is important 
to have a sufficient number of abscissae in the peak region; then their exact 
positionsdetermined by the value of &do not matter very much. 

Thus we conclude that it is preferable to use Rule W if possible, since the corre- 
sponding t-value is closer to the optimal l-range than the value corresponding to 
rule W’. 

TABLE II 

Mobius Transformation (2.6) Combined with Gauss-Legendre Rule G‘,: 
Applied to the Integral of Function (3.5b) in the Interval [- 1, l] with 

PIE 16, 12, 18, _.., 90) for Different 2 

n 
5 6 12 18 24 30 n(l3) 

0.983 3 3 4 5 7 60 
0.966 2 5 6 7 9 42 
0.950 3 5 1 10 11 36 
0.933 3 5 8 10 13 30 
0.926 3 5 9 11 13 30 
0.920 3 5 9 11 13 30 
0.913 3 I 9 13 13 24 
0.906 3 6 9 12 13 30 
0.900 3 5 9 12 13 30 
0.893 3 7 10 13 13 24 
0.886 3 6 9 13 13 24 
0.880 2 5 9 13 13 24 
0.873 3 5 9 13 13 24 
0.866 3 6 10 12 13 30 
0.853 3 6 9 13 13 24 
0.833 2 6 8 12 13 30 
0.766 3 5 7 10 12 36 
0.666 2 4 I 7 11 42 
0.333 0 3 3 5 7 
0.000 1 2 3 4 5 - 

Nofe. Plotted is the number of exact decimal digits after rounding. ~(13) 
is the first value of n in the specified range where 13 exact digits are 
obtained. Gauss-Legendre rules correspond to 5 =O. Working Rule W’ 
corresponds to 5 = 0.983. while the t-value corresponding to Rule W is close 
to 5 = 0.893. 
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Though our main emphasis in this paper is laid on fixed quadrature rules it mzy 
be noted that Mobius transformations can also be used together with automatic 
quadrature routines. 

We chose the routine DOlAJF of the NAG libraryy as an all-purpose automatic 
integrator. The performance of the routine may be controlled by giving two input 
parameters EPSABS and EPSREL as user defined absolute and reiative error 
requirements. The output is the value of the integral, the number of integrand 
evaluations. and an estimated absolute error of the result. We chose EPSA 
aiways. 

When DOlAJF was applied to function (3.3) on I- 1. 11 the routine needed 
357 integrand evaluations for EPSREL = fOdS: and 399 e-daluatior-s for 
EPSREL = 10p’3. When DOlAJF was applied to the new integrand g(u) corre- 
sponding to function (.3.2) for i = -0.996 (compare Fig. 1) only 63 integrand 
evaluations were needed for both relative error requirements. But it should be noted 
that the transform method based on Gauss-Legendre rules needs only 20 integrand 
evaluations in this case for the same accuracy: In ail cases the observed error t$;z s 

less than 10 I’.. 
Thus if information on peak position or width is av it may be worth trying 

to combine automatic routines with the appropriate s transformation. This 
approach seems to be efficient enough for normal users. It also may be extended 
easily to other coordinate transformations. A more complicated apphcation of 
Mobius transformations is the development of special-purpose automatic 
integrators [?3]. Which approach is better may be worth investigating by .;Ll;~zher 
nu.merical studies. 

4. DMTJSSION ANI> Sumlmk 

Coordinate transformations in integrals allow the use of relevant information on 
th behavior of the integrand to obtain new integrands which are easier ;o 
integrate. Thus the numerical quadrature of functions with a sharp peak at or close 
to one boundary of the interval of integration may be performed more efficiently 
since the new integrand function is smoother and has a fess pronounced peak. 

in this paper we showed that Mobius transformations of a special type for fXte 
intervals. Eq. (2.6), in combination with Gauss-Legendre rules or genera!-purpose 
automatic integrators are well suited for this purpose. it should be noted that the 
numerical effort to implement these coordinate transformations is low. since no 
additional transcendental functions have to be computed. 

The coordinate transformation (2.6) depends on one parameter 5 which has to 
be chosen in some way: Information on the width and/or position of the peak 
should suffice for this choice. We suggested and tested two working rules, W and 
W’. It turned out that Rule W led to better resuits than Rule W’ in the exampies 
studied. This is not surprising since essentially Rule W utilizes information 5uri: on 
peak position ancl width while Rule W’ relies only on knowledge of the position. 
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Certainly in each application of Mobius transformations as quadrature tools there 
will be a range of adequate r-values. In the examples studied, this range turned out 
to be broad; Working Rule W-and a bit less efficiently also rule W’--were useful 
to locate this range; the choice of 5 did not seem to be critical. It may be conjec- 
tured that this holds in general. 

The main emphasis in this paper is laid on coordinate transformations combined 
with standard Gauss rules. This method considerably facilitates the numerical 
quadrature of certain classes of functions without the necessity of computing non- 
standard Gauss rules corresponding to special weight functions. In the case of 
Eq. (2.6) combined with Gauss-Legendre rules we were able to determine all 
those functions explicitly for which our method is exact. The results presented in 
Section 3 show that the quadrature method for bounded intervals presented in 
Section 2 are useful for the quadrature of functions with a sharp peak at or near 
one boundary of the interval of integration. Though we have tested the method 
only for a limited number of functions we think that we have chosen examples 
which are typical enough to justify the statement about its usefulness. For semi- 
infinite intervals the present method using Mobius transformations (2.9) in com- 
bination with Gauss-Jacobi rules is equivalent to the well-known Gauss-rational 
rules. This sheds new light upon rules obtained using Mobius transformations for 
the finite interval in combination with Gauss-Legendre rules: They can be viewed 
as rational rules as well. 

In certain situations automatic integrators will be preferable to fixed rules. 
Fortunately it is possible to combine coordinate transformations with automatic 
routines as was described in the previous section. If an adequate transformation is 
chosen, one can make use of the reliability of automatic quadrature and largely 
avoid the costs of automatic integrators which are not adapted to the integrand. In 
this way it is not necessary to develop a special-purpose automatic integrator for 
every class of application. Instead, coordinate transformations are used as a tool 
which does not require too much highly specialized knowledge on how to program 
a good special-purpose automatic quadrature routine. In this paper we have shown 
how this problem can be solved for the quadrature of functions with a sharp peak 
at or close to one boundary of the interval of integration via Mobius transforma- 
tions. 

APPENDIX A: QUADRATURE RULES 

We discuss how the transform method using the coordinate transformations (2.6) 
and (2.9) can be formulated in terms of quadrature rules. 

In the case of bounded intervals one may use (2.6) in combination with 
G,, = .I!:, 8’; the n-pbint Gauss-Jacobi rule with abscissae uj and weights it) corre- 
sponding to the weight function ttp(R’ 8’(z,) = (1 - u)“( 1 + u)” on - 1 <U < 1 for 
x> -1, p> -1. With (2.5), we obtain new rules, R,,=Mj,“,‘1,4’, with abscissae 
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xi = ,cp(lz; ui) and weights coj= ~l,cp’(<; ui) depending on 17: 2. i?> and <. These rules 
evaluate I= j’ If(~) dx exactly, whenever f(.u j is of the form 

for < # 0. Equation (Al) holds because then the new integrand corresponding to ,f 
is a polynomial of degree not greater than 212 - 1, multiplied by H.!‘.~‘. Eauation 
(25) is the special case a = fl= 0 of (A.1 ) corresponding to the use of Gauss- 
Legendre rules, 19 is easy to show that these new rules converge to the exact va!~le 
of the integral for all Riemann-integrable functions in the limit .YE i- x8. 

In the case of semi-infinite intervals one can also construct quadrature rules using 
(2.9) but we will see that these rules are well known We use (2.9) in combination 
xwith G = PI’. 61 to obtain new rules RJ= C:‘_ i w,./(.Y~) with abscissae xj = @(5: ii;‘) II 
and weights eji= ;r~~@‘(<; u;) depending on n, x. 0, and 5. These rules evaiuate 
exactly I= j<‘/(x) LLX, whenever both i > 0 holds, and ,f(s) is of the form 

since then the new integrand corresponding to f is a suitable polynomial multiplied 
by the Gauss-Jacobi weight function. But in the notation of Ref. [21] Gauss- 
rational rules 

with adjusted weights I\‘, and abscissae x,, exactly evaluate the integra 
X= j;1” “f(s) dx whenever 

where c > .- 1. d > c t 1, a + t! > 0, and P,,,(t) stands for any polynomial in i isk 
degree 1~2 or less. Comparing with (A.?), we see that we have reproduced these rules 
for a = 0, 0 = <. c = p7 d= x + /3 + 2. This means that-up to a translation of the 
interval of integration-the use of Gauss-rational rules is equivalent to applying the 
coordinate transformation (2.9). 

Hence we have established a relation between Gauss-rational ruies on one hand 
and Mobius transformations for the semi-infinite interval combined with Gauss-- 
Jacobi rules on the other hand. Thus one can view rules obtained from the Mobius 
transformation (2.6) using Gauss-Jacobi rules as G,,: as an adaptation of Gauss- 
rationai rules to the case of a bounded interval. 
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